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Adhesives are being used increasingly in engineering

applications. One problem frequently encountered is that the

mechanical properties of the bond component rapidly deteriorates

upon exposure of the joint to its normal operating environment.

Water (moisture) is one of the most hostile and common environ-

ments to which adhesive joints are exposed. This paper is con-

cerned with the durability of polyurethane joints subjected to

wet climate conditions. In order to accelerate such exposure

the joints were immersed in water at elevated temperature. The

effect of silanes and surface morphology of etched substrates on

joint durability was examined.

Experimental

Materials

The materials used were 3-aminopropyltriethoxysilane (AS),

(y-glycidoxypropyl)trimethoxysilane (GS), 3-chloropropyltrimethoxy-

silane (CS), and 3-mercaptopropyltrimethoxysilane (MS) from Petrarch

Systems Inc.; TDI (80/20 mixture of 2,4- and 2,6-isomers of toluene

diisocyanates) from BASF Wyandotte Corporation; Isonal-100 (NN-

bis-(2-hydroxylpropylaniline) from Upjohn Polymer Chemicals; MICRO

laboratory cleaner from International Product Corp.; and hydroxy-

terminated polybutadene resin (R-45HT) from ARCO Chemical Co. The

properties of R-45HT were listed in earlier studies.

Precleaned opticlear soda lime microscope slides ( 25 x 25 x

1.06 mm) were from KIMBLE. Mirror finish chrome ferro-type stain-

less steel places were from Appolo. The aluminum alloy was 300

3-H-14.
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Preparation of Polyurethane

The polyurethane was prepared from hydroxyterminated poly-

butadiene (R-45HT), TDI and N,N-bis(2-hydroxypropyl) aniline. The

ratio [-NCO]/total [-OH] was kept constant and equal to 1. 6%

excess [-NCO] to hydroxyl number of R-45T was used. The equations

for calculating the required amounts of diisocyanate and N,N-bis(2-

hydroxypropyl) aniline and the procedure were the same as in previous

studies'.

Surface treatment of substrates

All amounts are in parts by weight unless otherwise stated.

Glass. Unabraded glass slides were heated at 140 0 C for 1 hr.

and kept in a dessicator over CaC1 2 until treated with the desired

reagent.

Surface abraded slides were ground with #600 aluminum oxide

abrasive from BARNES Engineering Company, rinsed with distilled

water, and immersed for 24 hrs. at room temperature in a mixture

of MICRO laboratory cleaner with H20 (50/50 by weight). The sol-

ution was heated to 900C for 1 hr and then the slides were rinsed

with distilled water, immersed in 900C distilled water for 1 hr.,

rinsed with cold distilled water, dried at 140*C for 1 hr. and kept

in a dessicator over CaCl2.

Metals. Small plates (Approximately 75 x 25 x 1 mm) cut

from the ferro-type plates were treated by one of four different

methods before applying the chemical and elastomer layers:

I. Cleaned with petroleum ether or acetone and dried at 600C

for 40 minutes.

2. Cleaned as in 1; immersed for 10 minutes at 900C in a solution

- . ' q 1 \' -" .... *,,* .. ;_,..,.*...%.-.....



3

of concentrated hydrochloric acid (50 parts) and distilled

water (50 parts); rinsed with cold distilled water; and

dried at 600C for 40 minutes.

3. Cleaned as in 1; immersed for 20 minutes at 800C in a solution

of oxalic acid (9 parts), sulfuric acid (1 part), and distilled

water (80 parts); and rinsed and dried as in 2.

4. Cleaned as in 1; immersed at 70-75 0C for 5 minutes in a solution

of hydrochloric acid (83.3% by volume), phosphoric acid (12.5%

by volume); and rinsed and dried as in 2.

The surfaces of aluminum plates of similar size were prepared

by one of four methods:

5. Cleaned with petroleum ether and dried at 600C for 40 minutes.

6. Abraded with fine sandpaper; and cleaned and dried as in 5.

7. Cleaned as in 5; immersed for 10 minutes in a 70°C solution

of distilled water (30 parts), sulfuric acid (10 parts),

sodium dichromate (1 part); and cleaned and dried as in 2.

8. Cleaned as in 5; immersed in 15% NaOH at 400C for 5 minutes;

rinsed with distlled water; and then method 7 without the

petroleum ether step.

Application of silane solution

The silanes were applied at room temperature by immersing

the substrates for 5 min. in a 0.5% by weight solution of the

silane in a 50/50 mixture by volume of ethanol and water. Several

drops of hydrochloric acid (pH"4) as a catalyst for silane were

added also except when the silane was AS. After removing the sub-

strates from the silane solution, they were dried in air and then

heated for 30 minutes at 100 0C before applying the elastomer layer.

I % : % - ".-... "... '-. "-." -"." . " "% "" -. " "" " " ." " " -" " .-. " * " - .- . ..*'. . .. '.*
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Application of elastomer layer and curing

For adhesion studies appropriately treated substrates were

placed in a Teflon coated compression mold and the prepolymer

containing the glycol was poured on. The top plate of the mold

was covered with a sheet of washed, dried and pressed cotton cloth.

The sample was cured at 100*C for 4 hrs. at 25 psi per 5 inch ram

in a preheated PHI press. Rubber sheets were cured in a vertical

mold in a Vacuum Oven at 1000C for 5 hrs.

Measurement of work of adhesion

1800 peel tests were carried out on strips of cloth backed

elastomer layer after trimming them to a uniform width of 2 cm.

on the substrate. The cloth-backed elastomer layer was peeled off

the substrate at a constant rate of 0.5 cm/min. The work of ad-

hesion per unit area of interface WA was calculated from the time

average of the peel force P per unit width w of the detaching layer

WA = 2P/w.

Tensile tests

Tensile tests were carried out at room temperature and a

cross head speed of 50 cm/min. using dumbbell specimens. Breaking

elongation was calculated from the ratio (Lb-L 0)/Lo, where L0 and

Lb were the initial length and the length at break, respectively.

Contact angle measurements

Contact angle measurements were carried out at room temper-

ature with a contact angle goniometer manufactured by KERNCO

Instrument Co. For each liquid five drops were placed on a sub-

stkate, and contact angle readings were taken from both left and

! ' = - ' ', ' ,v V* -9 ,.. -- I, ' - .... .. ""' "
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right sides of the liquid-air-solid interface. Readings were

recorded at 10 and 20 minutes after the drops were placed on

the substrate.

Electron microscopy

The electron microscopy was carried out with scanning

electron microscope model JSM-U3.

Results and Discussion

Effect of water on bulk properties of polyurethane

According to ARCO hydroxyl terminated polybutadiene resin,

R-45HT has the following chemical structure 2'3 .

H04-(CH CH=CHCH2U.2TtCH2-CH-U.(CH2 
.CH

= CH C  - OH

I
CH=CH2

In contrast to the two principal classes of polyurethanes, from

polyethers and from polyesters, the polyurethanes formed from

polybd resin display certain properties and performance character-

istics attributable to the hydrocarbon backbone. The most out-

standing of these characteristics are outstanding low temperature

properties and good hydrolytic stability. The glass transition

temperature of the polyurethane derived from a prepolymer con-

taining 6% Free NCO is about -65OCl. As shown in Fig. 1, when

this polyurethane was immersed in distilled water at 70*C, the

ultimate tensile strength ab, and the elongation at break, eb,

decreased slightly with increasing immersion time. After soaking

for 55 days at 700C Ob decreased by about 30%, while eb dec7:z_%.ze2

by about 25%.
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Fig. 1 - Effect of water on ultimate tensile strength (a b) and

breaking elongation (e b).
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Adhesion of polyurethane to smooth glass surfaces

Warburg and Ihmori4 recognized that glass surfaces, which

have been exposed to room air, are covered by a water film. Infra-

red adsorption spectra of physically adsorbed water in porous silica show

that the water is hydrogen bonded both intermolecularly and to

hydroxyl groups on the silica surface s. When the polyurethane

elastomer of this study is applied to a glass surface, the tertiary

amine groups from the N,N-bis(2-hydroxypropyl)aniline in the back

bone of the polyurethane can react with the acidic silanol groups

present in the glass surface or perhaps even with surface moisture

to form an ionic bond.

O/AN
I

CH2-CH-CH 3

~CH2-CH-CH3

Our earlier studies indicated that high adhesion results. But as

shown in Fig. 2 the work of adhesion fell dramatically, when glass/

polyurethane peel test specimens were immersed in distilled water

at room temperature. In order to improve the wet adhesion, glass

slides were treated with AS, GS, or MS before applying the poly-

urethane. The dry adhesion increased remarkedly. At equivalent

concentrations of silanes the order of enhancement in the work

of adhesion was AS > MS > GS. Cohesive failure was observed for

glass slides pretreated with AS and MS. As in our earlier studies,

results can be explained in terms of the different structures of

silanes 1, - s AS has two reactive hydrogen atoms that can react

.- U . . %.,'.,% % "% " %. ,
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Fig. 2 - Effect of different treatments of glass surface on work

of adhesion, WA. 0 treated with AS, S treated with MS,

O treated with GS, A abraded and treated with AS, 0 abraded

with #600 abrasive, + untreated.
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with the NCO group of the prepolymer, MS has just one reactive

hydrogen atom and GS has none. The degree of enhancement of

adhesion is related to the number of bonds that can form between

the silane and polyurethane.

* /polyurethane
GLASS -O-Si-CH2-CH2-CH2-NZ

%%polyurethane

GLASS -O-Si-CH2-CH2-CH2-S- polyurethane

GLASS -O-Si-CH2-CH2-CH2-CH CH2

The glycidoxy group might react with the hydrogen atom that is

present in the polyurethane backbone by a ring opening reaction but

this reaction is much more difficult than the one between -NCO and

-NH.

The wet adhesion was slightly improved for silane treated

glass surfaces, but the durability of the joints still decreased

considerably after soaking for several days. At equivalent con-

centrations of silane, the order of decrease in the work of adhesion

was AS > GS > MS.

The polyurethane based on polybd resin R-45HT has good

hydrolytic stability. Thus the losses in the work of adhesion

after immersion in water must result from the adverse effect of

&
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water on the interface rather than on the bulk properties of the

polyurethane. Thermodynamic calculations indicate that if only

secondary forces are acting across a glass/adhesive interface,

water will virtually always desorb an organic adhesive from the

glass surface10 . In our experiments the presence of ionic bonds

can result in markedly reduced adhesion in the presence of water,

which would solvate the ionic clusters". Also according to

Plueddeman1 2 , a flexible polymer like polybutadiene cannot form

water resistant bonds to a hydrophilic mineral surface even with

added silane coupling agents. As individual siloxane bonds are

hydrolyzed, the silanols retract from the surface and are no longer

available for new bond formation. Water gradually interposes itself

throughout the interface until adhesion is completely lost.

From our observations, it seems that silane coupling agents

do not exclude water from the interface but somehow function to

retain adhesion in the presence of water. As shown in Fig. 2 at

equivalent concentrations of silane, the order of decrease in the

work of adhesion was AS > GS > MS. With the GS or MS treated glass

surface, a fully condensed polysiloxane has some polarity arising

from the terminal epoxy or mercapto groups, but these groups do

not usually take part in hydrogen bond formation. The cured

material would not be expected to show highly polar interaction

with water. In the case of AS, the terminal amine group has a

strong tendency to absorb water by hydrogen bonding and that could
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lead to bond rupture and the poorer wet adhesion, compared to

GS or MS pretreated glass surfaces, observed for AS pretreated

glass surfaces.

When AS treated glass slide samples were prepeeled to some

extent, a thin layer of elastomer was left on the glass surface

due to cohesive failure. Upon immersion in distilled water for

several days, the adhesion between the thin layer and the glass'

surface was completely lost but the thin layer remained firmly

attached to the elastomer. The initial WA of AS treated glass

surfaces to the polyurethane was 1234 KN/M 2 ; after soaking for

155 hr in distilled water at room temperature the WA became

88 KN/M 2 . When the specimens were dried in vacuum at room temper-

ature for 4 days, the WA increased to 1000 KN/M 2 . Similar partial

recovery in strength of adhesive joints after drying has been

reported previously for bonds between polyethylene and glass or

steel12 and between epoxy adhesives and aluminum" . Permanent

loss in bond strength has been ascribed to covalent bond rupture1
3

whereas recoverable loss in bond strength is variously attributed

to reforming of hydrogen bonds 1 3 and an equilibrium of bonding

and debonding in the presence of water1 2 . In the present case

strength recovery can be attributed to reformation of ionic bonds.

Adhesion of polyurethane to abraded glass surfaces

The durability studies of Gledhill and Kinloch support the

conclusions reached above'4 . They conclude that in order to improve

durability of adhesive joints to water either the water must be
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prevented from reaching the interface or water resistant interfacial

bonds must be formed. Formation of such bonds requires that special

care should be taken to prepare the surface prior to joint prepa-

ration. Abrading a surface could be advantageous in two ways.

First, the surface area would be increased and provide more sites

for formation of chemical bonds. Second, a suitably abraded surface

could provide sites for mechanical interlocking of the adhesive to

the substrate. In the present study, grinding a glass surface with

#600 abrasive from Barnes Engineering Company, gave high dry ad-

hesion but had no effect on improving wet adhesion. (See Figure 2)

If the ground glass surface was treated with AS before applying the

polyurethane, the durability of the joint in the presence of water

was much improved. Anchoring of the organic polymer in a rough

surface improved dry adhesion but it was not effective at improving

wet adhesion. When there were micropits along with an increased

number of active chemical groups on the substrate surface as in the

case of the AS pretreated ground glass surface, the wet adhesion

was much improved.

Adhesion of chrome steel to polyurethane

Figures 3 and 4 show that after immersion in distilled water

for several days the WA of a petroleum ether cleaned chrome steel

surface to polyurethane was decreased markedly. When the metal

surface was pretreated with GS, CS, or MS, the treatments were

similarly ineffective at improving the durability of the joints

in water. (See Figure 3). Pretreatment
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Fig. 4 - Effect of acid etching of chrome steel surface on WA

o etched with HC1-HF-H3PO4 (method 4), A etched

with H2C2O04.H 2 SO4'H 20 (method 3) and treated with

prepolymer containing 0.5% GS, 0 etched with H2C204.

H2SO4.*H2O (method 3), * etched with HCl*H2O (method 2),

+ cleaned with petroleum ether (method 1).
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with AS was very effective. The AS treated chrome steel surface

gave a high WA , even after immersion in distilled water for 23

days; its WA after 23 days was still higher than the initial WA

of surfaces pretreated with the other silanes. GS, MS, CS have

less effect on the steel surface than AS. The amino group of the

latter silane can be chemisorbed by metal oxide surfaces'5 , and

contribute to the high WA observed.

The influence of chrome steel surface preparation

Surface preparation of substrates for joining adhesively

plays a dominant and most important part in the reliability of

the finished product. The prime purpose for surface preparation

is to develop a bonding surface that will result in an optimum

bond and provide the best service protection possible in the

expected service environment.

Etching. Chrome steel surfaces were subjected to the surface

treatments 2, 3, and 4 described in the experimental section. The

effect of different surface treatment on the work of adhesion WA

of a chrome surface to polyurethane is shown in Fig. 4. HCl/

HF/H3 PO4 treated chrome steel surface gave the highest WA, HCI/H20

and H2C20/H 2SO/H 20 treatment had similar effects on the WA*

Their wet adhesion was much improved compared to the unetched

surface, probably as a result of mechanical interlocking of the

. . . . . . . . . . . . . . . . . . . ...... *. , .... .. . . . . . .. ;*"*' ;. - .
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surface and the adhesive. In addition chemical treatment may

have altered the surface to increase its free energy and make

it more receptive to the adhesive. The usual result of chemical

surface treatments of metals with acids in the presence of air

is metal oxide formation16 .

Experimental observations support the above conclusions.

The morphology of the etched chrome steel surfaces is shown in

Figure 5. As a result of acid etching, the surface profile was

actually quite rough on a micro scale. HC1/HF/H3PO4 etching

resulted in more micro etch pits than other treatments did.

The H2C204/H2SO4/H20 etched surface was smooth and micropit free.

Probably the etching condition was too mild.

Chemical surface treatment not only produces micro etching

pits but also increases the chemical polarity of the surface.

Contact angles for water and glycerol on the etched metal surfaces

are shown in Table 1. Chromium is resistant to the attack of a

wide variety of chemicals at normal temperatures but it can react

with many of these at elevated temperaturel0 , .

When the H2C204/H2SO/H 20 treated surface was pretreated

with GS before applying the elastomer, the wet adhesion was
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TABLE I

Contact Angle on Metal Surfaces

Method of Surface Treatment Contact Angle

Chrome Steel Water Glycerol

Cleaned with petroleum ether 51 52

Etched with HF-HCl.H3PO 31 55

Etched with HCl-H 20 28 54

Etched with H2C20.-H2SO4-H 20 34 46

Aluminum

Cleaned with petroleum ether 60 44

Etched with 15% NaOH 49 35

Etched with Na2CrO4-H 2SO4.H 20 50 28

Etched with 15% NaOH and Na2CrO4.H 2SO4.H 20 52 29

* *.* %*4**.
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enhanced significantly. The reasons for the improvement are

probably similar to those given above in the section dealing with

silane treatment of glass surfaces.

Etching of chrome steel plus silane in the resin recipe.

Silane coupling agents are usually applied to a substrate surface

as a pretreatment from dilute aqueous solution. In this part of

our study silane was added to the prepolymer at a concentration

of 0.5g silane/100g prepolymer. The prepolymer containing silane

and glycol was applied to a HF/H3PO4 /HCl etched chrome steel sur-

face. The effect of different silanes of the work of adhesion is

shown in Fig. 6. The durability of the joint in

the presence of water was much improved. Even after immersion in

distilled water for over two months, there was only a slight

decrease in WA. The improved durability is attributed to increasing

the extent of covalent bond formation between silane and acid etched

metal surfaces compared to unetched surfaces. Polyurethane con-

taining 0.5% GS gave the highest WA and that containing 0.5% MS

provided the lowest WA. Probably part of the MS was consumed by

reaction of -SH with NCO. The CH2CH2CH2Cl group might to some

extent form hydrogen bonds with the tertiary amine groups in the

backbone of polyurethane, decrease the diffusion of GS into the

interface, and result in the intermediate strength of adhesion.

The adhesion of aluminum to polyurethane

Aluminum is always covered with an oxide layer. The bonding

interface of aluminum is not the metal itself but a variety of
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Fig. 6 - Effect of silane treatment of HF.HC1-H 3PO4 etched chrome

steel surfaces on WA. 0 treated with GS, 0 treated with

CS, A treated with MS.
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aluminum oxide structures whose physical and chemical constitution

can be altered through a variety of chemical procedures .10  Bond-

ability depends on the structure of the oxide layer. Water is

absorbed on the surface of nonhydroscopic oxides like (A1203) as

hydroxyl groups (^M-OH) and as molecular water held by H-bonding

to the surface hydroxyls.

Etching of aluminum. One of the methods to assess the

quality of a pretreated surface is to make an adhesive joint. The

work of adhesion, WA, of different pretreated aluminum surfaces to

polyurethane is shown in Fig. 7. Abraded aluminum surfaces gave

high initial WA, but during immersion in distilled water the rate

of loss of WA was similar to petroleum cleaned aluminum. Aluminum

treated with aluminum surface treatment No. 8 gave much better wet

adhesion than the others.

Figure 8 shows the change of morphology at different stages

of pretreatment. The "as received" state of the aluminum surface

is not structured but it is contaminated. After cleaning with

petroleum ether the "clean" surface still has some loose particles

(Fig. 8A). The alkaline degreased surface shows an irregular

structure with pits and some loose particles on the surface (Fig. 8B).

A Na2CrO4 /H2SO4 etched surface gave a smooth etched surface with

micro pits (Fig. 8C) and the alkaline cleaned-acid etched surface

provided a concave, hilly micro morphology with oxide pits (Fig. 8D).

In our experiments acid etching was influenced by alkaline pre-
cleaning. A smooth surface gave a low peel strength whilst a

, . -,.- , ,.%. . ' ... • .... , . .............. . .. . . $'
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microscopically rough surface provided high peel strength. It

seems the anchoring of the adhesive plays an important role.

Acid etching plus silane pretreatment. Bond failure in

the presence of water is due to adsorption of water on the alum-

inum surface. In order to improve the durability of bond strength,

in the presence of water, acid etched aluminum surfaces were

treated with 0.5% silane. The effect of different silanes on

the work of adhesion, WA , of aluminum to polyurethane is shown

in Fig. 9. Their wet adhesion was much improved; even after

immersion in 700 C distilled water for 264 hrs, WA decreased just

slightly. At equivalent concentrations of silane, the order of

durability of bond strength in the presence of water was AS > MS > GS.

Trialkoxysilane chemically bonds to polyurethane by reaction of the

organic functional group such as -NH2 , -SH etc., with an -NCO group

of the prepolymer and may form metalosiloxane bonds to the alum-

inum surface. The degree of durability of the adhesion bond is

related to the number of bonds that can form between the silane

and polyurethane.

Base cleaning plus acid etching plus silane pretreatment of

aluminum. The influence of alkaline cleaning in addition

to acid etching is given in Fig. 10. Alkaline cleaned-acid etched

alu _>..... .-e higher WA 's than just acid etched surfaces.

Durability was also better. As before the reasons for the ob-

served behavior probably include both improved mechanical inter-

locking and a greater number of interfacial covalent bonds.
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Conclusion

The water durability of joints between glass or metal sub-

strates and polyurethane can be greatly improved by proper surface

preparation combined with the use of silane pretreatments. 3-

Aminopropyltriethoxysilane is a very effective primer.
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